CML 301
SOME INTRODUCTION INTO CML, CML SCIENCE, DRUG DEVELOPMENT AND INFORMATION RESOURCES

by
Sarunas Narbutas
Jan Geissler

4 May 2018
CML 101 / BASICS: UNDERSTANDING THE DISCUSSIONS IN CML SESSIONS
What is BCR-ABL?

- CML is a type of cancer that begins in the cells in the bone marrow
- A piece of the chromosome 22 and a piece of chromosome 9 break off and swap places

- BCR-ABL cancer gene:
 - The break on chromosome 9 = ABL
 - The break on chromosome 22 = BCR
 - People living with CML carry the BCR-ABL gene

BCR-ABL gene = type of protein known as tyrosine kinase
Causes of CML = Unknown

• However...

✓ We know it is not hereditary (children of people with CML do not have a higher chance to get it)
✓ We know it is not contagious (it doesn’t pass from one person to the next)
✓ The average age of diagnosis in western countries is 65 and in developing countries is 38. It is ultra-rare in children (although in developing countries it seems more likely to occur in children and young adults)
✓ It more often occurs in men than women
Tyrosine Kinase Inhibitors (TKIs)

BCR-ABL gene = protein known as tyrosine kinase

Inhibit = prevent, impede, stop

• TKIs target BCR-ABL and don’t target normal cells (targeted therapies)
• Currently 5 TKIs for CML available, plus a number of generics/copies

<table>
<thead>
<tr>
<th>Drug</th>
<th>Market Name</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Imatinib</td>
<td>Glivec/Gleevec</td>
<td>Novartis</td>
</tr>
<tr>
<td>Imatinib</td>
<td>(Various)</td>
<td>Generics companies</td>
</tr>
<tr>
<td>2. Dasatinib</td>
<td>Sprycel</td>
<td>BMS</td>
</tr>
<tr>
<td>3. Nilotinib</td>
<td>Tasigna</td>
<td>Novartis</td>
</tr>
<tr>
<td>4. Bosutinib</td>
<td>Bosulif</td>
<td>Pfizer</td>
</tr>
<tr>
<td>5. Ponatinib</td>
<td>Iclusig</td>
<td>Ariad</td>
</tr>
</tbody>
</table>
First Generation TKI, Second Generation TKI

- Imatinib (Glivec) is often referred to as **First Generation** TKI because it was the first one to be developed.

- Dasatinib, nilotinib and bosutinib (Sprycel, Tasigna, Bosulif) are sometimes referred to as **Second Generation** TKI because they came out later than imatinib.

- Ponatinib is sometimes referred to as **Third Generation** TKI.

Second generation TKI is NOT the same as *second line* treatment (= drug that follows after 1st drug fails).
What is Drug Resistance?

• The cells become resistant to the drug, the drug can not longer keep the CML cells from growing again
• The TKI stops working for some reason
• Look for other changes in the chromosomes or genes (mutations), so “the key” (TKI) does no longer fit into “the lock” (BCR-ABL)
• Doctors know which TKI works best for which mutation
 • Example: mutation T 315i = ponatinib works and the others don’t

• A LOT ABOUT THIS IS STILL UNKNOWN
What is Drug Intolerance?

- The drug causes side effects that the patient cannot tolerate
- Caused by drugs also interfering with other body functions and not just BCR-ABL
- Some patients have more side effects than others
 - Always talk to your doctor about side effects
 - Intolerance is one reason identified in a label, where it is allowed to change treatment to a second line TKI

- A LOT ABOUT THIS IS STILL UNKNOWN
Monitoring CML Treatment

- Monitoring = checking how the treatment is working
 - Is the TKI still inhibiting the BCR-ABL or are the cells becoming resistant?
 - Need to check how deep is the response

- Monitoring CML, different methods:
 - "Complete Blood counts" (CBC) = measures hematological response = most superficial response
 - Cytogenetics and FISH = measures cytogenetic response = number of cells carrying the "Philadelphia Chromosome" in the bone marrow
 - PCR = measures molecular response = ratio of BCR-ABL molecules present (also called ‘residual disease’ or ‘molecular test’)

Monitoring CML

- Types of response to treatment

<table>
<thead>
<tr>
<th>Response type</th>
<th>Partial</th>
<th>Major</th>
<th>Complete/Deep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematological (H)</td>
<td>PHR</td>
<td>MHR</td>
<td>CHR</td>
</tr>
<tr>
<td>Cytogenetic (Cy)</td>
<td>PCyR</td>
<td>MCyR</td>
<td>CCyR (2 log reduction)</td>
</tr>
<tr>
<td>Molecular (M)</td>
<td>PMR</td>
<td>MMR (3 log reduction)</td>
<td>MR4.5 (4.5 log reduction)</td>
</tr>
</tbody>
</table>

- ELN & NCCN = 2 entities that produce guidelines for physicians on
 - When should they switch from one treatment to another
 - How often tests should be performed

- CML Advocates Network, patient summary, www.cmladvocates.net/cmlsummary
Log Reduction

- "Log reduction" is a mathematical term (as is "log increase") used to show the proportion of BCR-ABL eliminated from the sample. Factor 10 = 1 log
- It is another way to express how deep is the response

- Log reduction:
 - 1 log reduction means the number of cells with BCR-ABL is 10 times smaller than initially
 - 2 log reduction means the number is 100 times smaller
 - 3 log reduction means the number is 1000 times smaller (MMR)
 - 4 log reduction means the number is 10,000 times smaller (MR4)
 - 4.5 log reduction means the number is 32,000 times smaller (MR4.5)
PCR, what is all the fuss about?

- **Prognosis** (ability to predict if a patient will continue to do well for a long time) depends on **how fast** patients achieve response, and on **how deep** is a patient’s response, and whether they **meet certain milestones** within a certain time.
 - Therapy recommendations (e.g. ELN, NCCN) help to understand the goals of treatment
 - PCR technology helps doctors know how deep is the response
 - Current research focuses on the consequences of **not having an early, fast response**, on what to do after a **long period of very deep remission**, and **how to eradicate CML** altogether.

- Traditional PCR technology is not easy to do well, and not available everywhere
 - Complicated, very dependent on technology and staff
 - Needs to be standardized (in the international scale) to be comparable between labs

IF NOT ON THE INTERNATIONAL SCALE, IT IS DIFFICULT TO INTERPRET THE RESULTS
Treatment Free Remission (TFR) vs Eradicating CML

- **Treatment Free Remission**: describes the status of patients who stop taking TKI and still maintain their CML undetectable or at a very low level
 - Used instead of the word cure, because the disease might still be there, however not progressing even without therapy

- **Eradicating CML**: refers to the potential of treatment to actually cure CML
 - Some new drugs (not TKIs) are being tested to see if they eradicate also the last residual CML stem cell
HOW DOES DRUG DEVELOPMENT WORK?
Phases of Medicines Research & Development

- Research & Discovery
- Non-clinical Development
- Clinical Development Phase I, II & III
- Post-approval Life-cycle management & Pharmacovigilance
Of 8,000 molecule candidates, only 5 ever get into human clinical trials, and only 1 makes it to the market.
In different phases of clinical trials, dosing, safety, efficacy is tested in an increasing numbers of patients.
In different phases of clinical trials, dosing, safety, efficacy is tested in an increasing number of patients.

Phase II trials: Therapeutic effect, optimal dose, toxicity

Phase III trials: Large multicentre comparative studies on safety and efficacy of the new medicine compared to standard medicine. Goal: approval

CML examples: IRIS, ENESTnd, DASISION, …
After regulatory approval and reimbursement decision, late-phase trials optimize therapy and collect more (safety) data.

Phase IV trials: Real-life data, therapy optimization of approved drugs, …
Difference between industry-sponsored and investigator-initiated trials – and real world data

Industry-sponsored research

- Industry: More targeted towards assessment and regulatory approval of new drugs, new indications, new regimens

Investigator-initiated trials, academic research

- Academic trials: More focused on therapy optimisation, long-term outcomes, understanding disease biology, real-life care

Patients in clinical trial centers

- Most patients are treated individually outside of clinical trials (= no data, except some registries or real-world data)
Most trials are sponsored by industry and then run at academic hospitals (but this is not either/or)
So what does this mean in CML?

• CML is still a dangerous chronic disease that kills when badly treated, and where no cure exists for most patients.
• Future CML therapies are in different stages of development (phase II to phase IV). Many will not work, some might bring the cure.
• CML is pioneering stopping treatment, but current drugs will only allow every 4th CML patient to stop successfully.
• To interpret the “hope and hype”, we need to look carefully where they are in the development cycle.
Current Research Questions in CML

1. New drugs:
 - Phase I/II trials for new compounds, e.g. ABL001, Ruxolitinib, Nivolumab in combination with existing TKIs. Main goals: Better TFR rates or overcoming resistance.

2. Optimizing current drugs in the market:
 - When is the best time to switch TKI (ELN, NCCN guidelines, milestones)
 - What dose gives best efficacy or reduces serious side effects
 - When and who can stop treatment (TFR)
 - Does the immune system and/or interferon have a role in controlling CML?

3. Improving Quality of life and avoiding serious side effects:
 - The interactions of additional diseases (“co-morbidities”) on CML therapy
 - How to optimize quality of life given specific, also low-grade side effects of TKIs
WHERE TO FIND AND HOW TO BETTER UNDERSTAND CML RESEARCH
1. Discovery of Medicines
2. Pre-clinical development
3. Clinical Development
4. Clinical Trials
5. Regulatory Affairs, Drug Safety, Pharmacovigilance
6. Health Technology Assessment
CML Advocates Network Trial Database
http://www.cmladvocates.net/cmltrials

- Currently 25 CML trials described that are recruiting
- +22 trials that are no longer recruiting
- Continuously updated
Information from medical conferences e.g. ASH, EHA

- ASH Abstracts
- ASH Reports of Giora, Jan
- Free EHA tickets
Other helpful resources that help you and patients to understand CML therapy & research

Your organisation can use them to support patients!

• Patient-friendly summary of Treatment Recommendations of the European LeukemiaNET in 17 languages
 http://www.cmladvocates.net/cmlsummary

• Summary of the CML Adherence Study in 79 countries
 http://www.cmladvocates.net/adherence

• Educational videos on adherence, side effects, testing and monitoring
 http://www.cmladvocates.net/education/educational-videos

• CML Generics Knowledge Base and Webinar
 http://www.cmladvocates.net/generics

• CML Glossary with all common terms used in CML
 http://www.cmladvocates.net/glossary
CML RESEARCH AT CML HORIZONS 2018
Medical Sessions at CML Horizons 2018

Medical #1: CML Management in Countries with Access Challenges
Chairs: Mercedes Arteaga & Rod Padua

• Access to treatment (Eastern Europe)
 Speaker: Andrija Bogdanovic

• Access to monitoring (Africa)
 Speaker: Nicholas Anthony Othieno Abinya

• TFR in low and middle-income countries (Asia)
 Speaker: Raymond Wong

Medical #2: First-line decision making
Chairs: Cornelia Borowczak & Šarūnas Narbutas

• Did the introduction of generics change clinical decisions in first-line therapy?
 Speaker: Gianantonio Rosti

• Pediatrics: New labels of Nilotinib and Dasatinib
 Speaker: Meinolf Suttrop

• Update on Treatment Guidelines
 Speaker: Delphine Rea
Medical Sessions at CML Horizons 2018

Advocacy #3: Stopping CML treatment - clinical data, ‘bad practice, patient information
Chairs: Jelena Čugurović & Felice Bombaci

- Clinical update on TFR studies
 Speaker: Delphine Rea
- Bad Practice examples
 Speaker: Jan Geissler
- Informing patients about TFR
 Speaker: Giora Sharf

Medical #3: Side Effect Management
Chairs: Lisa Machado & Jana Pelouchova

- Long-term side effects of TKIs
 Speaker: Gianantonio Rosti
- Collaboration of cardiologists and hematologists
 Speaker: Tristan Mirault + Delphine Rea
- Side effect management: Nurse experience
 Speaker: Irene Caballes
Medical #4: New Agents / New Regimens
Chairs: Zack Pemberton-Whiteley & Cathy Scheepers

- ABL001/Ascitinib trials
 Speaker: Delphine Rea
- Is there any evidence to use lower TKI doses?
 Speaker: Delphine Rea
- How will therapeutic landscape in CML change in next 5 years in your region?
 Panel discussion with speakers from Asia (Raymond Wong), Africa (Nicholas Anthony Othieno Abinya), Eastern Europe (Andrija Bogdanovic), Europe (Gianantonio Rosti)