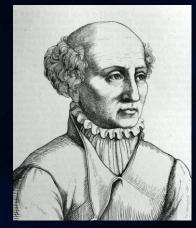


Optimal Dose of TKI's

Andreas Hochhaus, Jena, Germany



cml@med.uni-jena.de

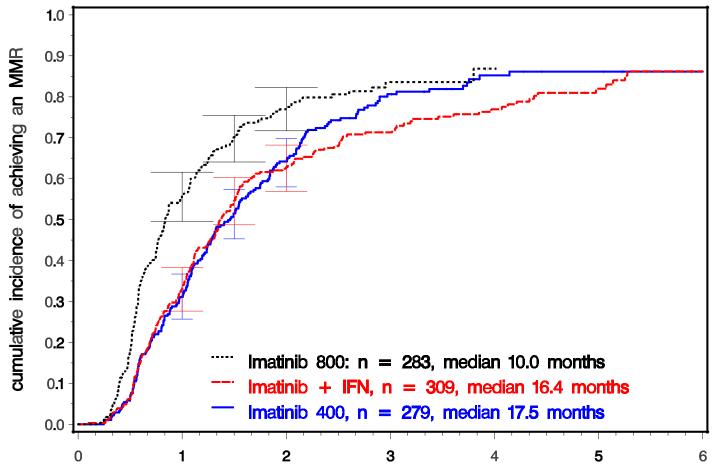
"sola dosis facit venenum"

Paracelsus 1493-1541 Swiss philisopher and botanist

Basic principle of toxicology.

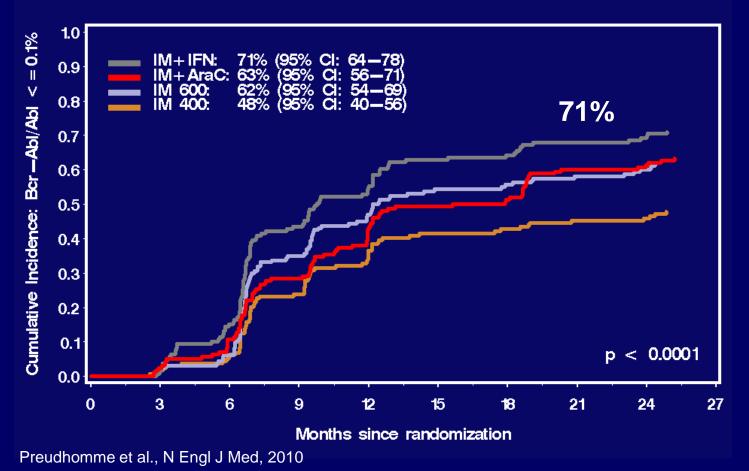
Meaning:

All things are poison and nothing is without poison; only the dose makes a thing not a poison.

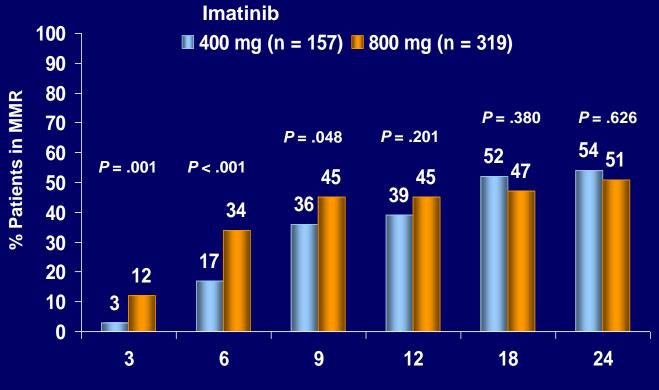

Main messages to doctors treating CML patients

- First, think about the antileukemic effect
- Second, know the toxicity profile of all the drugs you could use
- Third, think about previous comorbidities
- Any adverse event adds up on comorbidity

What is the right dose?

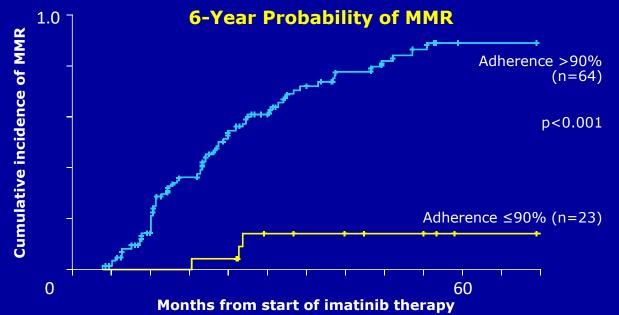

Drug		Salvage		Frontline				
	Initial approval	Current	Should be	Initial attempt	Approved	Should be		
Imatinib	400 mg QD	400 mg QD	600-800 mg QD?	400 mg QD	400 mg QD	600-800 mg QD		
Dasatinib	70 mg BID	100 mg QD	50-100 mg QD?	100 mg QD	100 mg QD	50-80 mg QD? 5 days/w.?		
Nilotinib	400 mg BID	300-400 mg BID	300-400 mg QD?	300-400 mg BID	300 mg BID	300 mg BID		
Bosutinib	500 mg QD	500 mg QD	400 mg QD?	500 mg QD	400 mg QD	400 mg QD		
Ponatinib	45 mg QD	45→15 mg QD	45→15 mg QD	45 mg QD				

CML IV: Time to MMR

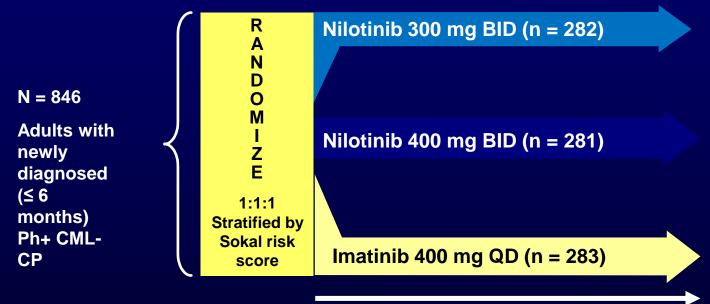


years after diagnosis

French SPIRIT-Study: MMR (n=636)


High vs. regular dose imatinib – TOPS trial: MMR over time

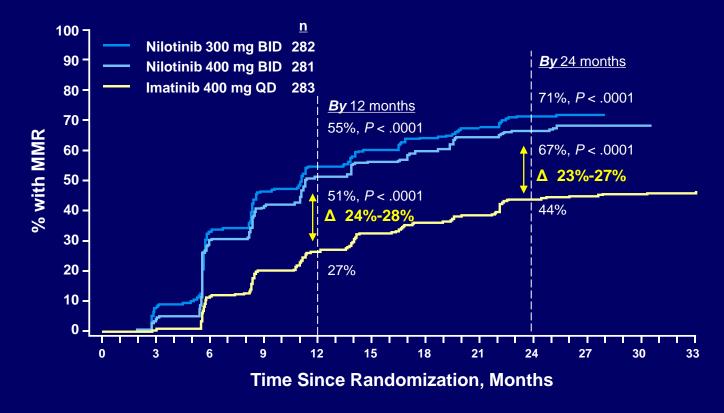
Month


Adherence and Achievement of MMR

 Poor adherence to therapy significantly reduced molecular response rates for patients (N=87) with CML-CP treated with imatinib

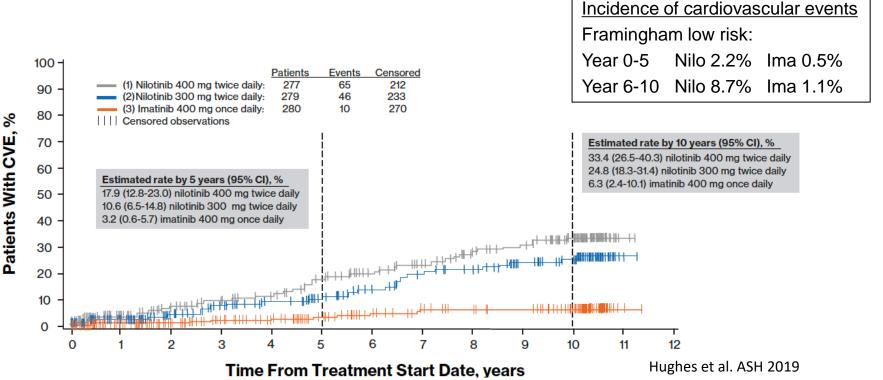
Marin et al. JCO. 2010;28:2381-2388.

ENESTnd: Nilotinib vs. Imatinib

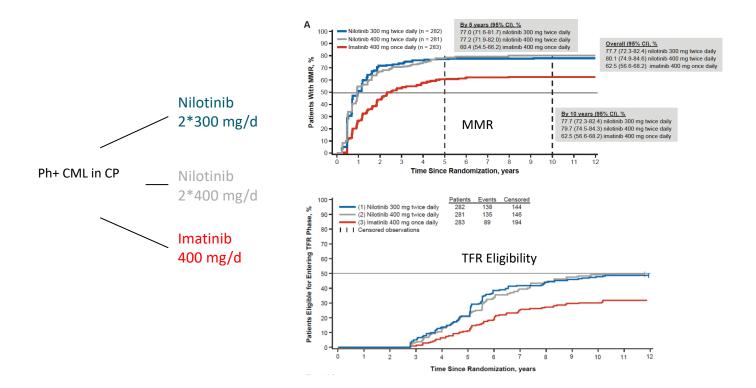


Planned follow-up: 10 years^{a,b}

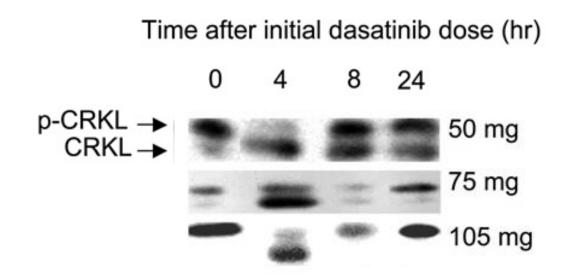
^a The ENESTnd study protocol originally called for 5 years of follow-up, which was later extended to 10 years.


^b Patients randomized to nilotinib 300 mg BID or imatinib who experienced suboptimal response or treatment failure could discontinue core treatment and enter an extension study in which they received nilotinib 400 mg BID. Patients randomized to nilotinib 400 mg BID were initially permitted to enter the extension study and receive imatinib 400 mg QD; however, a protocol amendment after the 36-month data cutoff removed this option. Survival and progression outcomes during extension study follow-up were included in the "on study" analyses for the core study.

ENESTnd: Cumulative incidence of MMR


Larson et al., ASCO 2011

ENESTnd: Nilotinib vs Imatinib First line therapy: Cardiovascular events.

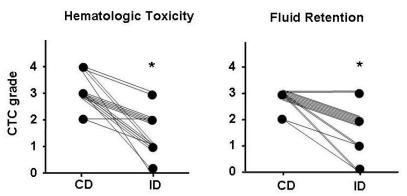


Kantarjian et al. Leukemia. 2021;35:440-53

ENESTnd: Nilotinib vs. Imatinib

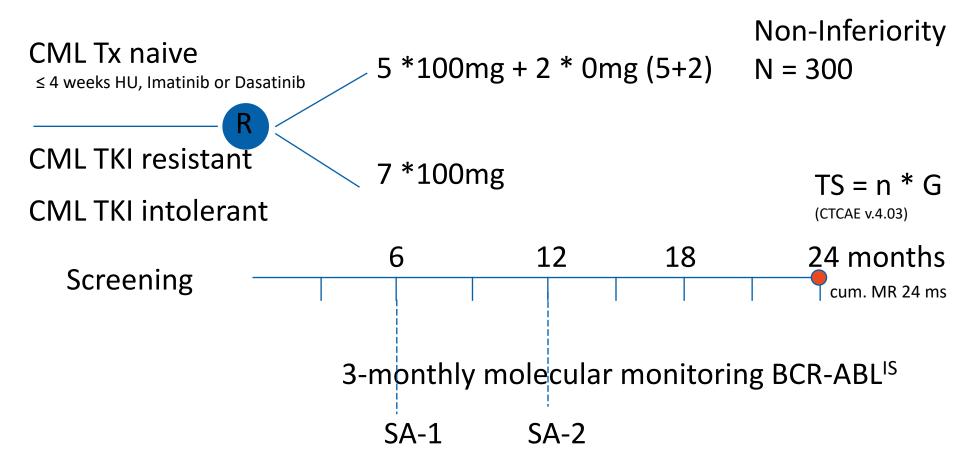
Dasatinib: Transient inhibition of BCR-ABL

Shah et al., Cancer Cell 2008


Ann Hematol (2013) 92:1345–1350 DOI 10.1007/s00277-013-1769-2

ORIGINAL ARTICLE

Improved tolerability by a modified intermittent treatment schedule of dasatinib for patients with chronic myeloid leukemia resistant or intolerant to imatinib


Paul La Rosée • Philippe Martiat • Armin Leitner • Thomas Klag • Martin C. Müller • Philipp Erben • Thomas Schenk • Susanne Saussele • Andreas Hochhaus

Toxizitätsreduktion durch Dasatinib Weekend Holiday

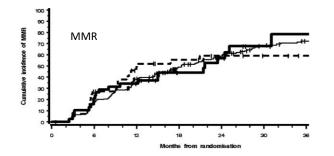
Das 5 + 2 Schema, n = 33

Dasatinib Holiday for Improved Tolerability (DasaHIT)

DasaHIT. Interim analysis 2021: Side effects (n= 138)

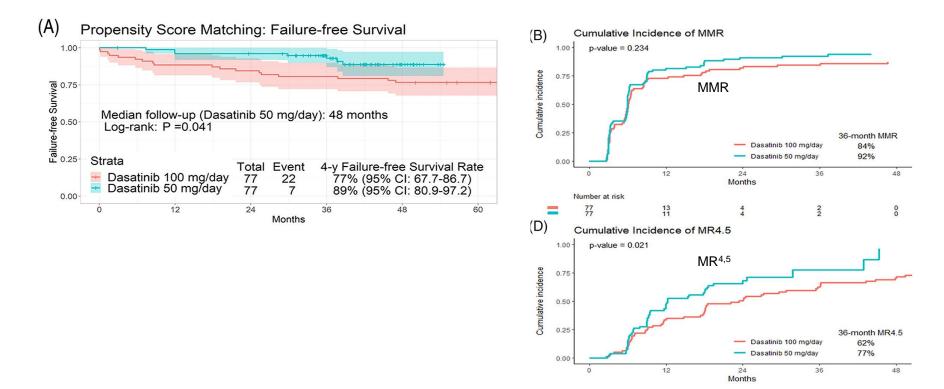

Arm A Arm B

1. Thrombocytopenia	n=12, 17%	1. Thrombocytopenia	n=15, 22%
2. Anemia	n=11, 16%	2. Pleural effusions	n=11, 16%
3. Heart failure	n=8, 12%	3. Abdominal pain	n=8, 12%


Pleural effusions

n=5,7%

Dasatinib dose optimization by drug monitoring?


Effect of dose reduction?

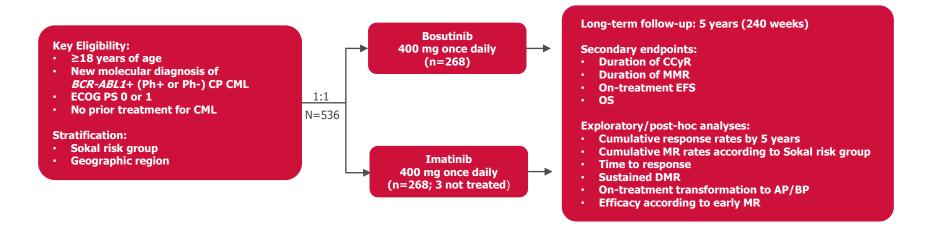
or effect of drug monitoring?

Rousselot et al. Br J Haematol 2021;194:393-402.

Efficacy of low dose dasatinib 50 mg/d

Jabbour et al. Am J Hematol 2022;97:1413-8.

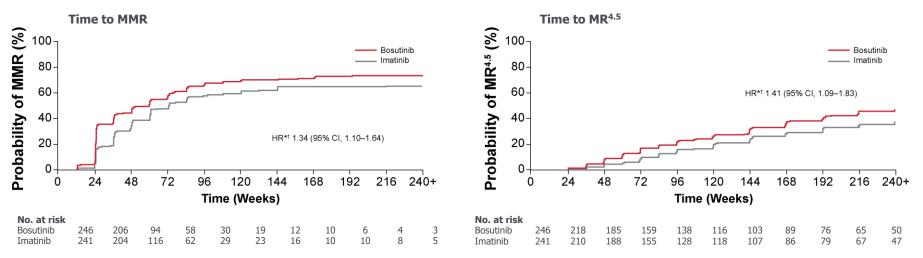
Dasatinib anhydrous (Daruph®)



- **Daruph®: "hybrid medicine"** (similar to an authorised medicine containing the same active substance, but certain differences such as in strength, indication or pharmaceutical form)
- Active substance in Daruph[®]: Dasatinib anhydrous (Sprycel[®]: Dasatinib monohydrate)
- Intended to allow lower dose of Dasatinib to achieve same effect <u>and</u> <u>concomitant use of PPIs (or H2-Antagonists)</u>
- Market authorisation in 2022 by EMA for newly diagnosed Ph+ CML-CP and CP, AP or BP-CML with resistance or intolerance to prior therapy including imatinib (and Ph+ ALL)

BOSUTINIB: BFORE STUDY DESIGN

 BFORE (NCT02130557) was an open-label, randomized, multicenter, phase 3 trial

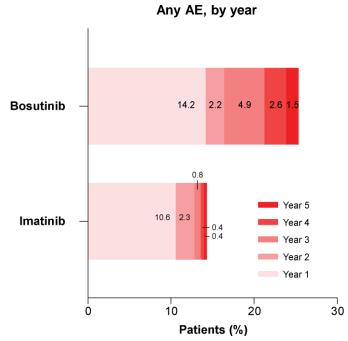

This final analysis was based on a last patient last visit of April 17, 2020 (June 12, 2020 database lock), 5 years after the last enrolled patient.

AP=accelerated phase; BP=blast phase; CCyR=complete cytogenetic response; DMR=deep molecular response; ECOG PS=Eastern Cooperative Oncology Group performance status; EFS=event free survival; MMR=major molecular response; MR=molecular response; OS=overall survival

Brümmendorf et al., ASH 2020

MOLECULAR RESPONSE

Cumulative response rates by 60 months, % (95% CI)*	Bosutinib n=268	Imatinib n=268	OR (95% CI)
MMR	73.9 (68.6–79.1)	64.6 (58.8–70.3)	1.57 (1.08-2.28)
MR ⁴	58.2 (52.3-64.1)	48.1 (42.2-54.1)	1.50 (1.07-2.12)
MR ^{4.5}	47.4 (41.4–53.4)	36.6 (30.8–42.3)	1.57 (1.11–2.22)



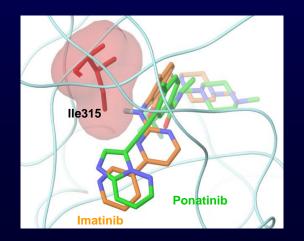
* Adjusted for Sokal risk group and region as determined at the time of randomization.

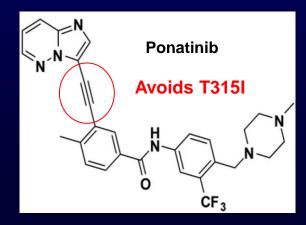
⁺ From a proportional subdistributional hazards model adjusted for competing risk of treatment discontinuation without a response.

Ratios with 95% CIs excluding 1 are predictive (no adjustment for multiple comparisons). MMR: BCR-ABL1 IS $\leq 0.1\%$. MR⁴: BCR-ABL1 IS $\leq 0.01\%$. MR^{4.5}: BCR-ABL1 IS $\leq 0.0032\%$. Brümmendorf et al., ASH 2020

Any Grade AEs Leading to Treatment Discontinuation

n (%)*	Bosutinib n=268	Imatinib n=265		
Any AE	68 (25.4)	38 (14.3)		
Increased ALT	13 (4.9)	0		
Increased AST	7 (2.6)	0		
Increased lipase	5 (1.9)	2 (0.8)		
Diarrhea	4 (1.5)	3 (1.1)		
Thrombocytopenia	3 (1.1)	4 (1.5)		
Neutropenia	3 (1.1)	1 (0.4)		
Muscle spasms	0	3 (1.1)		
Myalgia	0	3 (1.1)		


 \ast TEAEs occurring in >1% of patients in the bosutinib or imatinib arm are reported.


AEs=adverse events; ALT=alanine aminotransferase; AST=aspartate aminotransferase

Ponatinib A "Pan"-BCR::ABL1 Inhibitor

- Rationally designed inhibitor of BCR::ABL1
- Active against T315I mutant
- Also targets other therapeutically relevant kinases:
 - Inhibits multiple kinases, incl. Vascular Endothelial Growth Factor Receptor, VEGFR

20% vascular events on 45 mg/day

O' Hare T, et al. Cancer Cell. 2009;16:401-412

PACE: Serious Arterial Thrombotic and Venous Thromboembolic Event Rates

	Phase 2 (PACE) N=449				
Datacut Date	23 Jul 2012	03 Sep 2013			
Median Follow-up, Months	12	24			
Arterial Thrombotic Events, n (%)	34 (7.6)	53 (11.8)*			
Venous Thromboembolism, n (%)	10 (2.2)	13 (2.9)			

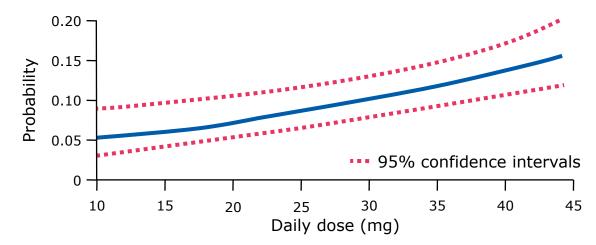
Serious arterial thrombotic events are composed of:

- Cardiovascular events (6.2%)
- Cerebrovascular events (4.0%)
- Peripheral vascular events (3.6%)

(Some patients may have more than 1 type of event)

October 2013

Selected Treatment-Emergent Vascular Occlusive Events by Disease Group

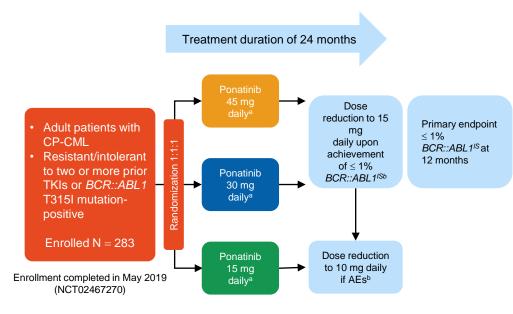

≥5% Incidence in Total	CP-CML N=270			AP-CML N=85		BP-CML N=62		Ph+ ALL N=32		Total N=449	
Population	AE n (%)	SAE n (%)	AE n (%)	SAE n (%)	AE n (%)	SAE n (%)	AE n (%)	SAE n (%)	AE n (%)	SAE n (%)	
Vascular occlusive events ^b	67 (25)	49 (18)	19 (22)	13 (15)	10 (16)	7 (11)	5 (16)	3 (9)	101 (23) ^c	72 (16) ^d	
Arterial thrombotic	61 (23)	44 (16)	17 (20)	12 (14)	6 (10)	3 (5)	2 (6)	2 (6)	86 (19)	61 (14)	
Cardiovascular	27 (10)	20 (7)	12 (14)	7 (8)	3 (5)	2 (3)	1 (3)	0 (0)	43 (10)	29 (7)	
Cerebrovascular	27 (10)	18 (7)	5 (6)	4 (5)	0 (0)	0 (0)	1 (3)	1 (3)	33 (7)	23 (5)	
Peripheral vascular	23 (9)	14 (5)	3 (4)	2 (2)	3 (5)	1 (2)	2 (6)	2 (6)	31 (7)	19 (4)	
Venous thromboembolic	11 (4)	7 (3)	3 (4)	1 (1)	6 (10)	5 (8)	3 (9)	1 (3)	23 (5)	14 (3)	

- > Median time to onset for venous thrombotic events:
 - Total patients: 161 (3-802) days
 - CP-CML patients: 604 (62-802) days
- > Median time to onset for arterial thrombotic events:
 - Total patients: 244 (3-952) days
 - CP-CML patients: 281 (8-952) days

Data as of 6 Jan 2014

PONATINIB: CORRELATION BETWEEN ARTERIAL VASCULAR EVENTS AND DOSAGE

Ponatinib dose and risk of arterial thrombotic events

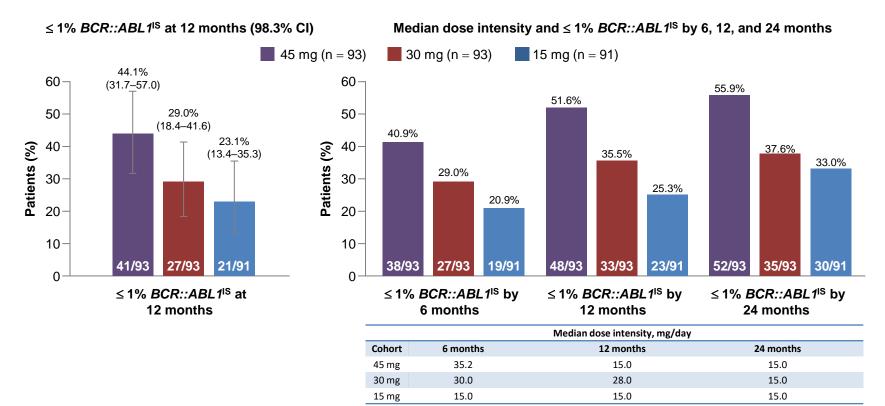


- Strongest independent predictors for an increased risk of arterial thrombotic events: Ponatinib dose, age and history of ischemic episodes.
- A risk reduction of 33 % can be expected with each reduction of 15 mg in the Ponatinib dose.

• The risk of vascular events decreases by 33 % with each dose reduction of 15 mg per day.

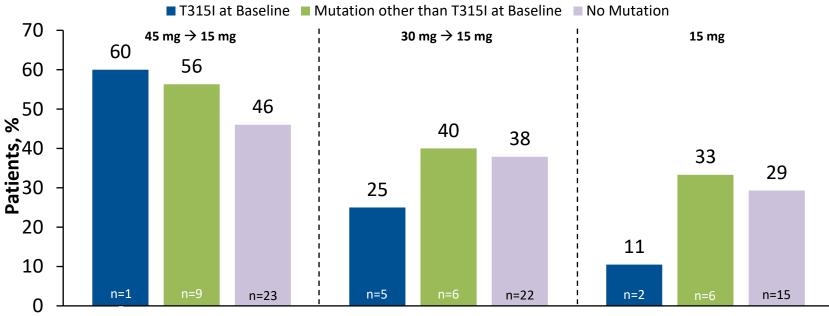
Dorer D et al. Leuk Res 2016;48:84–91.

OPTIC (Optimizing Ponatinib Treatment In CP-CML): Ongoing, Multicenter, Randomized Phase 2 Trial


The goal of OPTIC was to optimize ponatinib dose using a novel response-based reduction strategy

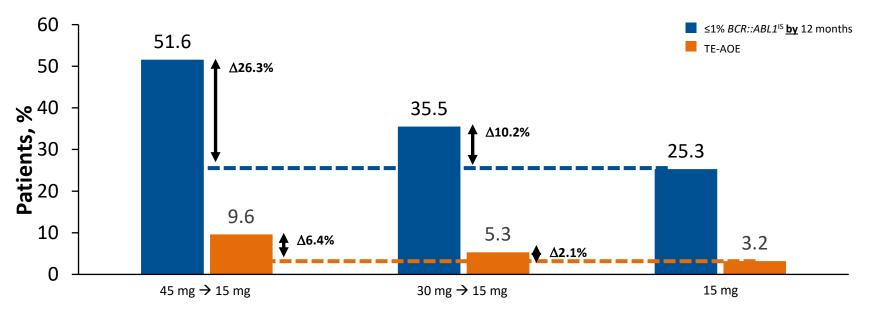
^aDose reductions due to AEs were permitted;

^bEscalation to the starting dose allowed for patients who last their response following dose reduction


Cortes J, et al. Blood. 2021;138:2042-50.

OPTIC trial: Ponatinib efficacy by starting dose

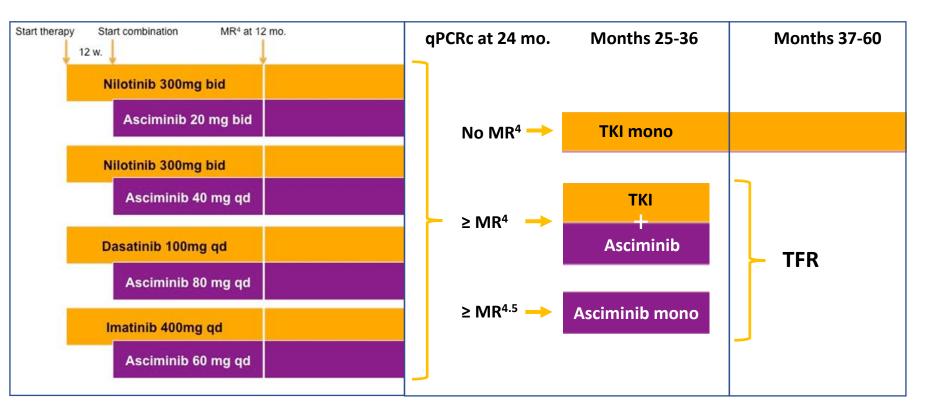
Cortes et al. Blood. 2021;138:2042-50.


OPTIC: ≤1% BCR::ABL1^{IS} Response Rate to Ponatinib by 12 Months by T315I Baseline Status

≤1% BCR-ABL1^{IS} by 12 months

^aPatients on study who had not reached 12 months were excluded from the denominator.

OPTIC: Overall Safety and Efficacy by Starting Dose of Ponatinib



- The percentage of patients with ≤1% BCR::ABL1^{IS} decreased with decreasing doses
- The incidence of TE-AOEs decreased with decreasing doses

TE-AOE, treatment-emergent arterial occlusive event

Fascination: Study design

HEILBAR DURCHEORSCHUNG

Leben mit Blutkrebs

YAPIANO

DEUTSCHE

CML.ALLIANZ

22.9.2017 cml@med.uni-jena.de